Abstract

With the emergence of fused ring electron acceptors, the power conversion efficiency of organic solar cells reached 19%. In comparison with the electron donor and acceptor materials progress, the development of cathode interlayers lags. As a result, charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performances. Herein, a hybrid cathode interlayer composed of PNDIT‐F3N and PDIN is adopted to investigate the interaction between the photoexcited acceptor and cathode interlayer. The state of art acceptor Y6 is chosen and blended with PM6 as the active layer. The device with hybrid interlayer, PNDIT‐F3N:PDIN (0.6:0.4, in wt%), attains a power conversion efficiency of 17.4%, outperforming devices with other cathode interlayer such as NDI‐M, PDINO, and Phen‐DPO. It is resulted from enhanced exciton dissociation, reduced trap‐assisted recombination, and smaller transfer resistance. Therefore, the hybrid interlayer strategy is demonstrated as an efficient approach to improve device performance, shedding light on the selection and engineering of cathode interlayers for pairing the increasing number of fused ring electron acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.