Abstract

Tremendous efforts have been devoted to boosting the power conversion efficiency (PCE) of organic solar cells (OSCs) via the introduction of cathode interlayers (CILs). However, CIL materials have limited diversity and the development of multifunctional devices is largely neglected. Herein, an acidochromic organic photovoltaic integrated device is firstly proposed by introducing an acid-sensitive stimulating-reaction organic molecule as both the CIL of OSCs and the sensor of monitoring environmental acidity. The oxazolidine unit of acidochromic molecule can form a ring-opening structure after acid treatment, resulting in the remarkable color change with the direct reflection of pH value of ecological environment. The additive-free PM6:Y6 OSCs using the acidochromic molecule as the CIL achieve an excellent PCE of above 15.29 %, which is 47 % higher than that of the control device. The PCE can even maintain above 92 % after treating CIL with various strong acids (pH = 1). Moreover, the color of acidified films and the degraded performance of acidified OSCs can be easily restored by alkaline treatment. The successful application of CIL in other highly efficient photovoltaic systems proves its good universality. This work triggers the promising application of acidochromic molecules in solar cells as CIL with the additional function of recognition of acid environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.