Abstract
In this paper, we investigate hybrid beamforming, user scheduling, and resource allocation optimization based on spectrum coexisting forward transmission in integrated terrestrial-satellite network (ITSN) with the purpose of improving system sum rate and energy efficiency. Considering the limitation of on-board beamforming, a hybrid analog-digital beamforming scheme is designed under the scenario of millimeter wave (mmWave) coexisting in the ITSN framework. Besides, in order to further mitigate intra-beam and inter-beam interference, we propose an adaptive user scheduling scheme, which first determines the cluster center based on adaptive threshold, and then selects users with less channel correlation into a scheduling cluster. Moreover, we model system sum rate maximization problem that incorporates maximum power constrains and minimum data rate requirements. Combined with the aforementioned hybrid beamforming and user scheduling strategy, we formulate the sum rate maximizing problem to a pure power allocation issue. In view of the non-convexity and high complexity, we propose a feasible optimization method based on the minimum mean square error (MMSE) criterion and logarithmic linearization to optimize the power allocation for each user terminal (UT). Simulation results show that our proposed joint beamforming and resource allocation optimization scheduling scheme can achieve an attractive gain in system sum rate and energy efficiency compared with conservative beamforming and allocations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.