Abstract
Abstract This article reviews the past successes and future challenges of model-based approaches for the analysis, design, and control of hybrid vehicles. Hybrid and electrified vehicles have demonstrated significant fuel economy improvement, especially for city driving, and are gaining market acceptance. The success of hybrid vehicles in Japan demonstrates the potential for hybrid vehicles in other urban markets with high fuel prices, such as large cities in Europe and Asia. Hybrid vehicles are generally classified according to their powertrain architecture. The electric grid and the transportation system are the two largest sectors that produce greenhouse gas emissions. When large numbers of vehicles are electrified and draw power from the electric grid, it is important to aim for reduced overall greenhouse gas emissions, rather than just shifting emissions from tailpipes to power plant stacks. The article concludes that the design, modeling, and control of hybrid vehicles is a subject rich in research opportunities for the dynamic systems and control community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.