Abstract

Great difficulties existed in fabricating large components of SiC particles reinforced aluminum matrix composites with excellent mechanical properties using existing manufacturing procedures. This study demonstrated that the challenges can be addressed by developing a hybrid solid-state additive manufacturing method. The influence of the deposition procedures and the post-processing heat treatment on the microstructure and mechanical properties of the SiC particles reinforced 2009 aluminum ally matrix composites (SiCp/2009Al composites) was systematically investigated using advanced technologies such as spherical aberration corrected transmission electron microscope, atom probe tomography, etc. The results showed that the SiCp/2009Al composites produced by the hybrid solid-state additive manufacturing exhibited enhanced tensile properties and improved isotropy in mechanical properties compared to the extruded feedstock of SiCp/2009Al composites. This was attributed to the formation of dense metal with uniformly distributed SiC particles, high-density of Cu–Mg co-clusters, refined grains and SiC particles, low deformation texture, tightly bonded SiCp/2009Al interface, and sound interfacial bonding between deposited layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.