Abstract

This paper introduced a novel hybrid AC/DC-coupled charging station architecture and corresponding hierarchical control strategy. The core element of the architecture is an integrated interlinking converter (ILC) named the energy routing unit (ERU). The ERU features multiple conversion stages, dedicated plug-and-play interfaces, and varied operation functionalities. The dual inputs of utility sources enhance the reliability of the power supply. The contained scalable charging module facilitates the DC fast charging via DC grids directly, and the traditional AC slow charging is also accommodated in this architecture. Regarding the architecture, a comprehensive hierarchical control strategy containing the local-level short-timescale transient control and upper-level long-timescale optimal power scheduling is proposed. The multi-objective optimization concerning the optimal economical operation and minimum load variance is incorporated into the upper-level power flow control. The detailed simulation cases demonstrate that the stable operation of the proposed architecture could be realized, and the desirable economical operation and low peak-to-valley load variance are to be implemented simultaneously. The enabled vehicle-to-vehicle (V2V) power coordination achieves mutual power support between AC and DC subgrids and increases the local consumption of renewable energy sources effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call