Abstract

In this paper, we demonstrate a novel hybrid 3C-silicon carbide-lithium niobate (3C-SiC-LN) platform for passive and active integrated nanophotonic devices enabled through wafer bonding. These devices are fabricated by etching the SiC layer, with the hybrid optical mode power distributed between SiC and LN layers through a taper design. We present a racetrack resonator-based electro-optic (EO) phase shifter where the resonator is fabricated in SiC while using LN for EO-effect (r33≈ 27 pm/V). The proposed phase shifter demonstrates efficient resonance wavelength tuning with low voltage-length product (Vπ.Lπ ≈ 2.18 V cm) using the EO effect of LN. This hybrid SiC-LN platform would enable high-speed, low-power, and miniaturized photonic devices (e.g., modulators, switches, filters) operable over a broad range of wavelengths (visible to infrared) with applications in both classical and quantum nanophotonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.