Abstract

Mammalian sperm must pass between cumulus cells and corona radiata cells before reaching the surface of the zona pellucida which surrounds the oocyte. The cumulus and corona radiata cells are separated from each other by an extracellular matrix (ECM) containing hyaluronic acid. The structure of this ECM and of the zona pellucida was investigated in the hamster oocyte-cumulus complex (OCC) using transmission electron microscopy (TEM) following processing in ruthenium red. When fixed in the presence of ruthenium red, the ECM of the OCC and the zona pellucida were well preserved and highly structured. The ECM between corona radiata cells was comprised of a network of granules and filaments which resembled hyaluronic acid containing matrices described in other systems. The outer one-third to one-half of the zona pellucida was porous; the ECM of the corona radiata extended into these pores. Bovine testicular hyaluronidase, Streptomyces hyaluronidase, and hamster sperm extracts containing hyaluronidase each dispersed the cumulus cells and most of the corona radiata cells. TEM examination revealed that brief (5-10 min) hyaluronidase treatment of OCCs removed the matrix filaments and caused clumping of the granules in both the corona radiata and zona pellucida. Longer hyaluronidase treatments (15-30 min) removed both filaments and granules. Our observations are consistent with the ideas that: 1) the ECM between corona radiata cells contains hyaluronic acid, and 2) hyaluronic acid is present in the outer one-third to one-half of the zona pellucida.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.