Abstract

A sandwich-type electrochemical cytosensor is described for quantitative determination of CD44-overexpressing HeLa cells. Hyaluronic acid (HA) acts as a targeting molecule that was in-situ incorporated into the sensor based on the use of an indium tin oxide (ITO) electrode modified with multi-walled carbon nanotubes (MWCNTs). The 3D-MWCNT structure is shown to strongly improve the electronic properties and surface chemical reactivities. The HA-modified sensor exhibits a highly sensitive response to HeLa cells. A sandwiched hybridization protocol was then established using BIO [an N-butyl-4-(6'-aminohexyl)amino-1,8-naphthalimide probe modified with HA] as the tracing labels of the fluorescent probes for targeting CD44-positive tumor cells. The signal amplification was thereby maximized and measured by chronocoulometry. The binding ofCD44-positive HeLa cells to the HA modified sensing layer causes a decrease in chronocoulometric response. The signal decreases linearly in the 2.1 × 102 to 2.1 × 107 HeLa cells·mL-1 concentration range with a detection limit of 70 cells·mL-1. Such a sandwich-type assay may be tailored as a sensitive candidate for detecting low levels of tumor cells. Graphical abstract Schematic of a sandwich cytosensor based on hyaluronic acid-grafted 3D-MWCNT as biosensing interface and BIO as fluorescent probe. This biosensor possessed excellent electrochemical activity, high sensitivity and selectivity, providing a dynamical tracking and detecting platform for CD44-positive tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call