Abstract

As the simplest glycosaminoglycan (GAG) in extracellular matrix, hyaluronic acid (HA) takes part in several important biological processes, such as regulating cell proliferation, differentiation, and migration. In this work, a series of HA-inspired polymers with different saccharide and carboxylate units (HA-analogue polymers) are synthesized by free radical polymerization, and characterized using Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and nuclear magnetic resonance spectrometer (NMR), Moreover, cell experiments demonstrate that HA-analogue polymers with a certain proportion of saccharide and carboxylate (PM1G1) units shows a positive effect on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). Furthermore, HA-analogue polymers have prominent cartilage inductive capacity in chondrogenic induction medium (CIM) and brilliant bone inductive capacity in osteogenic induction medium (OIM) toward BMSCs. Therefore, it is confirmed that the HA-analogue polymers can effectively mimic the functions of HA and have broad potential application prospects in the biomedical and clinical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.