Abstract

Bacterial multidrug resistance is a major challenge for the treatment of infection. In this study, a gold-silver hybrid nanocage (Au/Ag NCs) is designed to conjugated with an antimicrobial peptide (AP) and hyaluronic acid (HA) via Au-S bond and electrostatic adsorption respectively. HA-P(Au/Ag) shows a small size (128nm), a high efficiency of photothermal conversion, and a good stability. Under near-infrared (NIR) irradiation, HA-P(Au/Ag) effectively kills multidrug resistant bacteria-Acinetobacter baumannii (MDR-AB) by disrupting their inner and outer membrane. A pneumonia model caused by MDR-AB is established in mice. HA-P(Au/Ag) treatment reduces the number of bacterial colonies and inflammation in lung tissues and restores the structure of pulmonary alveoli. HA-P(Au/Ag)/NIR treatment increases the survival rate of pneumonia mice to 100%. Safety evaluation demonstrates that HA-P(Au/Ag) causes little cytotoxicity and hemolysis, and shows neglectable impact to the key indicators of kidney and liver function. To conclude, HA-P(Au/Ag) is a highly efficient and safe strategy that is promising to combat MDR-AB caused infection in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.