Abstract
To evaluate the effect of the size of low molecular weight hyaluronan (LMW-HA) oligomers on the targeting ability of the HA-containing copolymers to the CD44-overexpressing cells for delivering Paclitaxel (PTX) to ovarian cancer. LMW-HA oligosaccharides of 4, 6, 8, 10, 12 and 14 sugar residues were attained by digestion of HMW-HA using hyaluronate lyase at different incubation times and then attached to FITC-labeled HPMA copolymer precursor. The binding and uptake of the HA-modified HPMA-copolymer into CD44-expressing cells was studied by flow cytometry and confocal microscopy. PTX was further attached to HPMA-copolymer precursor bearing HA oligosaccharide at the size of 34 monosaccharides, through an acid-sensitive hydrazone linker. The cytotoxicity of the polymer was tested using cell viability assay. Polymer conjugates bearing HA oligomers at the size of 10 oligosaccharides and above (HA(10-14)) bind actively and profoundly to CD44-overexpressing ovarian cancer cells (SK-OV-3) and internalize to the greatest extent relative to HA-polymer conjugates of 8 oligomers and below (HA(4-8)). The HA-modified HPMA-copolymer PTX conjugate (P-(HA)(34)-PTX) exhibited 50-times higher cytotoxicity towards CD44-overexpressing cells relative to the control, non-targeted, HPMA-copolymer PTX conjugate (P-PTX). P-(HA)(34)-PTX was significantly more toxic than the non-targeted P-PTX in cells expressing high levels of CD44.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.