Abstract

Contact lens friction significantly correlates with subjective comfort. Hyaluronan (HA) and proteoglycan 4 (PRG4) are natural boundary lubricants present in the body. The objective of this study was to assess the effect of crosslinked HA into the bulk of model contact lens materials pHEMA, pHEMA/TRIS, and DMAA/TRIS on surface wettability, protein sorption, and boundary lubricating properties at a material-cornea biointerface, both alone and synergistically with PRG4 in solution. Surface wettability was assessed by water contact angle measurement, protein sorption by lysozyme sorption assay, and boundary lubricating properties using an in vitro friction test method. HA incorporation (HAinc ) increased the surface wettability of all materials, and reduced protein sorption for pHEMA and DMAA/TRIS. HAinc increased friction for pHEMA, and DMAA/TRIS, whereas a decrease was observed for pHEMA/TRIS. A combination of HAinc and PRG4sol had a synergistic effect of reducing friction only for pHEMA/TRIS. This combination had similar friction reduction compared with PRG4sol alone for DMAA/TRIS. These results indicate HA incorporation could be an effective internal wetting agent, antiadhesive, and boundary lubricant for pHEMA/TRIS silicone hydrogels. In conclusion, HA incorporation can reduce friction of hydrogels alone and in combination with PRG4 in solution, though in a hydrogel composition-dependent (e.g., TRIS) manner. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1818-1826, 2018.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.