Abstract

Chromium carbide-based coatings are commonly applied to protect surfaces against wear at high temperatures. This work discusses the influence of feedstock powder and spray torch selection on the microstructure and high-stress abrasion resistance of thermally sprayed Cr3C2-NiCr coatings. Four commercial feedstock powders with spherical morphology and different microstructures were deposited by different high-velocity spray processes, namely third-generation gas- and liquid-fueled HVOF torches and by the latest generation HVAF torch. The microstructures of the coatings were studied in the as-sprayed state and after various heat treatments. The high-stress abrasion resistance of as-sprayed and heat-treated coatings was tested at room temperature and at 800 °C. The study reveals that the selection of the spray torch mainly affects the room temperature abrasion resistance of the as-sprayed coatings, which is due to differences in the embrittlement of the binder phase generated by carbide dissolution. At elevated temperatures, precipitation and growth of secondary carbides yields a fast equalization of the various coatings microstructures and wear properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call