Abstract

Abstract This work reveals the influence of heat treatments on the microstructure, mechanical properties and abrasive wear behaviour of a Cr 3 C 2 NiCr coating deposited by an ethene-fuelled high-velocity oxygen-fuel spray process using an agglomerated-and-sintered feedstock powder. The wear resistance of an as-sprayed and heat treated (8 h at 800 °C) coating was evaluated in low- and high-stress abrasion regimes, the latter in a temperature range up to 800 °C. Precipitation of secondary carbides from the supersaturated as-sprayed binder matrix is at the core of the observed changes in the coatings wear resistance upon heat treating. This aging process renders the binder matrix softer and more ductile, as was probed by means of nanoindentation, and thereby improves its resistance against micro-cracking which is identified as an important wear mechanism in high-stress abrasion conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.