Abstract

Anaerobilin synthase catalyzes the decyclization of the heme protoporphyrin ring, an O2-independent reaction that liberates iron and produces the linear tetrapyrrole, anaerobilin. The marine bacterium Aliivibrio fischeri, the enteric pathogen Escherichia coli O157:H7, and the opportunistic oral pathogen Fusobacterium nucleatum encode anaerobilin synthase as part of their heme uptake/utilization operons, designated chu (E. coli O157:H7), hmu (F. nucleatum), and hut (A. fischeri). F. nucleatum and E. coli O157:H7 contain accessory proteins (ChuS, ChuY, and HmuF) encoded in their respective operons that mitigate against the cytotoxicity of labile heme and anaerobilin by functioning in heme trafficking and anaerobilin reduction. However, the hut operon of A. fischeri and other members of the Vibrionaceae family including the enteric pathogen Vibrio cholerae do not contain homologues to these accessory proteins, raising questions as to how members of this family mitigate against anaerobilin and heme toxicity. Herein, we show that HutW (anaerobilin synthase) from A. fischeri produces anaerobilin, but that HutX and HutZ, encoded downstream of HutW, do not catalyze anaerobilin reduction in the presence of excess NAD(P)H, FAD, and FMN. However, we show that HutZ prevents labile heme and anaerobilin cytotoxicity by binding tightly to heme, sequestering it from HutW, and preventing anaerobilin formation. Thus, A. fischeri is seemingly unable to extract iron from heme using the hutWXZ gene products. Our results further suggest that the structurally distinct chu, hmu, and hut operons have functionally converged to protect the cell from anaerobilin accumulation and heme cytotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.