Abstract

AbstractCultivar resistance is a major asset for the management of crop diseases and can play an important role in agroecological transition. However, the wide deployment of a reduced number of resistance genes can lead to a rapid adaptation of pathogen populations and to a loss of resistance efficiency. The objective of this study was to characterize and discuss different trajectories of adult plant ratings for resistance to yellow rust in French wheat cultivars between 1963 and 2018. Among 719 cultivars assessed for at least 2 years, 590 cultivars showed no variation in their resistance scores, despite a mean of 4.3 years and up to 33 years of assessment. A set of descriptive variables was computed in order to compare the evolution of resistance score of 129 cultivars that experienced resistance variation. We applied a principal component analysis and a hierarchical clustering on principal components to this subdataset to constitute clusters corresponding to different cultivar profiles. Clusters C1 and C2 had small resistance variations (1–2 points on a 1–9 scale); Cluster C3 had long assessment durations and several small drops in resistance score and could be associated with quantitative resistance erosion; Cluster C4 included major drops in resistance score (4–5 points), often associated with known breakdowns of major resistance genes. Cases of limited drops in resistance score as a known resistance gene was broken down suggest the presence of efficient adult plant resistance. We discuss the use of information extracted from this dataset and methods to further explore sources of resistance to yellow rust present in French cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call