Abstract

Epithelial-mesenchymal transition (EMT) contributes to high tumor heterogeneity and the immunosuppressive environment of the HCC tumor microenvironment (TME). Here, we developed EMT-related genes phenotyping clusters and systematically evaluated their impact on HCC prognosis, the TME, and drug efficacy prediction. We identified HCC specific EMT-related genes using weighted gene co-expression network analysis (WGCNA). An EMT-related genes prognostic index (EMT-RGPI) capable of effectively predicting HCC prognosis was then constructed. Consensus clustering of 12 HCC specific EMT-related hub genes uncovered two molecular clusters C1 and C2. Cluster C2 preferentially associated with unfavorable prognosis, higher stemness index (mRNAsi) value, elevated immune checkpoint expression, and immune cell infiltration. The TGF-β signaling, EMT, glycolysis, Wnt β-catenin signaling, and angiogenesis were markedly enriched in cluster C2. Moreover, cluster C2 exhibited higher TP53 and RB1 mutation rates. The TME subtypes and tumor immune dysfunction and exclusion (TIDE) score showed that cluster C1 patients responded well to immune checkpoint inhibitors (ICIs). Half-maximal inhibitory concentration (IC50) revealed that cluster C2 patients were more sensitive to chemotherapeutic and antiangiogenic agents. These findings may guide risk stratification and precision therapy for HCC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call