Abstract
Backward stimulated Brillouin scattering (SBS) is widely exploited for various applications in optics and optoelectronics. It typically features a narrow gain bandwidth of a few tens of megahertz in fluoride crystals. Here we report a hundredfold increase of SBS bandwidth in whispering-gallery mode resonators. The crystalline orientation results in a large variation of the acoustic phase velocity upon propagation along the periphery, from which a broad Brillouin gain is formed. Over 2.5 GHz wide Brillouin gain profile is theoretically found and experimentally validated. SBS phenomena with Brillouin shift frequencies ranging from 11.73 to 14.47 GHz in ultrahigh Q Z-cut magnesium fluoride cavities pumped at the telecommunication wavelength are demonstrated. Furthermore, the Brillouin–Kerr comb in this device is demonstrated. Over 400 comb lines spanning across a spectral window of 120 nm are observed. Our finding paves a new way for tailoring and harnessing the Brillouin gain in crystals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have