Abstract

Motivated by the recent discovery of superconductivity in infinite-layer nickelates RE_{1-δ}Sr_{δ}NiO_{2} (RE=Nd, Pr), we study the role of Hund coupling J in a quarter-filled two-orbital Hubbard model, which has been on the periphery of the attention. A region of negative effective Coulomb interaction of this model is revealed to be differentiated from three- and five-orbital models in their typical Hund metal active fillings. We identify distinctive regimes including four different correlated metals, one of which stems from the proximity to a Mott insulator, while the other three, which we call "intermediate" metal, weak Hund metal, and valence-skipping metal, from the effect of J being away from Mottness. Defining criteria characterizing these metals is suggested, establishing the existence of Hund metallicity in two-orbital systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.