Abstract

BLT mice, constructed by surgical implantation of human fetal thymus-liver tissues and intravenous delivery of autologous CD34+ haematopoietic stem cells into adult non-obese diabetic/severe combined immunodeficiency mice, were evaluated for vaccine-induced humoral immune responses. Following engraftment, these mice developed a human lymphoid system; however, the majority of the peripheral human B lymphocytes displayed an immature phenotype as evidenced by surface CD10 expression. Over 50% of the human B cells in the periphery but not in the bone marrow also expressed the CD5 antigen, which is found only infrequently on mature follicular B cells in humans. A single intramuscular immunization with recombinant viral envelope antigens, e.g., HIVgp140 and West Nile Virus envelope proteins, together with the immune stimulatory KLK/ODN1a composition) [corrected] adjuvant resulted in seroconversion characterized by antigen-specific human antibodies predominantly of the IgM isotype. However, repeated booster immunizations did not induce secondary immune responses as evidenced by the lack of class switching and specific IgM levels remaining relatively unchanged. Interestingly, the peripheral CD19+ CD5+ but not the CD19+ CD5- human B lymphocytes displayed a late developing CD27+ IgM+ memory phenotype, suggesting that the CD5+ B-cell subset, previously implicated in 'natural antibody' production, may play a role in the vaccine-induced antibody response. Furthermore, human T lymphocytes from these mice demonstrated suboptimal proliferative responses and loss of co-stimulatory surface proteins ex vivo that could be partially reversed with human interleukin-2 and interleukin-7. Therefore, vaccine-induced immune responses in BLT mice resemble a T-cell-independent pathway that can potentially be modulated in vivo by the exogenous delivery of human cytokines/growth factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.