Abstract

Neuroprosthetics and brain-machine interfaces are immensely beneficial for people with neurological disabilities, and the future generation of neural repair systems will utilize neuromorphic devices for the advantages of energy efficiency and real-time performance abilities. Conventional synaptic devices are not compatible to work in such conditions. The cerebrospinal fluid (CSF) in the central part of the nervous system is composed of 99% water. Therefore, artificial synaptic devices, which are the fundamental component of neuromorphic devices, should resemble biological nerves while being biocompatible, and functional in high-humidity environments with higher functional stability for real-time applications in the human body. In this work, artificial synaptic devices are fabricated based on gelatin-PEDOT: PSScomposite as an active material to work more effectively in a highly humid environment (≈90% relative humidity). These devices successfully mimic various synaptic properties by the continuous variation of conductance, like, excitatory/inhibitory post-synaptic current(EPSC/IPSC), paired-pulse facilitation/depression(PPF/PPD), spike-voltage dependent plasticity (SVDP), spike-duration dependent plasticity (SDDP), and spike-rate dependent plasticity (SRDP) in environments at a relative humidity levels of ≈90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.