Abstract

Materials that dynamically respond to their environment have diverse applications in artificial muscles, soft robotics, and smart textiles. Inspired by biological systems, humidity- and water-responsive actuators that bend, twist, and contract have been previously demonstrated. However, more powerful artificial muscles with large strokes and high work densities are needed, especially those that can be made cost-effectively from eco-friendly materials. We here derive such muscles from naturally abundant lotus fibers. A coiled lotus fiber yarn muscle provides a large, reversible tensile stroke of 38% and a work capacity during contraction of 450 J/kg, which is 56 times higher than that of natural skeletal muscles and higher than that for any other reported natural fiber muscles. In addition, highly twisted lotus fiber yarn muscles provide a fully reversible torsional stroke of 200°/mm of muscle length and a peak rotation speed of 200 rpm, with a generated specific torque of 488 mN·m/kg for a 2.5 cm long muscle. Potential applications of these lotus fiber yarn muscles are demonstrated for a weight-lifting artificial limb and a smart textile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.