Abstract

Carcinomas are common in humans but rare among closely related "great apes". Plausible explanations, including human-specific genomic alterations affecting the biology of sialic acids are proposed, but causality remains unproven. Here, an integrated evolutionary genetics-phenome-transcriptome approach studied the role of SIGLEC12 gene (encodes Siglec-XII) on epithelial transformation and cancer. Exogenous expression of the protein in cell lines and genetically engineered mice recapitulated ~30% of the human population in whom the protein is expressed in a form that cannot bind ligand due to a fixed, homozygous, human-universal missense mutation. Siglec-XII null cells/mice recapitulated the remaining ~70% of the human population in whom an additional polymorphic frameshift mutation eliminates the entire protein. Siglec-XII expression drove several pro-oncogenic phenotypes in cell lines, and increased tumor burden in mice challenged with chemical carcinogen and inflammation. Transcriptomic studies yielded a 29-gene signature of Siglec-XII-positive disease and when used as a computational tool for navigating human datasets, pinpointed with surprising precision that SIGLEC12 expression (model) recapitulates a very specific type of colorectal carcinomas (disease) that is associated with mismatch-repair defects and inflammation, disproportionately affects European-Americans, and carries a better prognosis. They revealed a hitherto unknown evolutionary genetic mechanism for an ethnic/environmental predisposition of carcinogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call