Abstract

High-toxicity secondary metabolites called aflatoxin are naturally produced by the fungus Aspergillus. In a warm, humid climate, Aspergillus growth can be considerably accelerated. The most dangerous chemical among all aflatoxins is aflatoxin B1 (AFB1), which has the potential to cause cancer and several other health risks. As a result, food forensicists now urgently need a method that is more precise, quick, and practical for aflatoxin testing. The current study focuses on the development of a highly sensitive, specific, label-free, and rapid detection method for AFB1 using a novel humanoid-shaped fiber optic WaveFlex biosensor (refers to a plasmon wave-based fiber biosensor). The fiber probe has been functionalized with nanomaterials (gold nanoparticles, graphene oxide and multiwalled carbon nanotubes) and anti-AFB1 antibodies to enhance the sensitivity and specificity of the developed sensor. The findings demonstrate that the developed sensor exhibits a remarkable low detection limit of 34.5 nM and exceptional specificity towards AFB1. Furthermore, the sensor demonstrated exceptional characteristics such as high stability, selectivity, reproducibility, and reusability. These essential factors highlight the significant potential of the proposed WaveFlex biosensor for the accurate detection of AFB1 in diverse agricultural and food samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.