Abstract
Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for “humanized” TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with “humanized” TLR4/MD-2 transgenic mice.
Highlights
The activation of host defense against Gram-negative bacterial pathogens is initiated after recognition of the bioactive component of lipopolysaccharide (LPS), lipid A, through Toll-like receptor (TLR) 4 and its coreceptor MD-2 [1,2,3,4]
Upon growth at 37uC, the mammalian host temperature, Y. pestis switches to synthesize a hypo-acylated LPS that is less stimulatory to the human compared with murine LPS receptor complex composed of Toll-like receptor (TLR) 4 and MD-2
We find that these mice are more sensitive to Y. pestis infection than WT mice supporting the notion that evasion of recognition by TLR4/MD-2 promotes Y. pestis virulence in humans
Summary
The activation of host defense against Gram-negative bacterial pathogens is initiated after recognition of the bioactive component of lipopolysaccharide (LPS), lipid A, through Toll-like receptor (TLR) 4 and its coreceptor MD-2 [1,2,3,4]. Variations in lipid A have been proposed to influence species-specific innate immune recognition. Hypoacylated LPS (with penta- or tetra-acylated lipid A) is poorly recognized by the human compared with mouse receptor complex resulting in a reduced inflammatory response [6,8,9]. These discordant responses suggest experimental infection in conventional mice may not accurately model the complex immune evasion strategies related to lipid A structural modifications employed by some Gram-negative bacterial pathogens that selectively cause human infection
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have