Abstract
This paper studies the hypothesis that not all modalities are always needed to predict affective states. We explore this hypothesis in the context of recognizing three affective states that have shown a relation to a future onset of depression: positive, aggressive, and dysphoric. In particular, we investigate three important modalities for face-to-face conversations: vision, language, and acoustic modality. We first perform a human study to better understand which subset of modalities people find informative, when recognizing three affective states. As a second contribution, we explore how these human annotations can guide automatic affect recognition systems to be more interpretable while not degrading their predictive performance. Our studies show that humans can reliably annotate modality informativeness. Further, we observe that guided models significantly improve interpretability, i.e., they attend to modalities similarly to how humans rate the modality informativeness, while at the same time showing a slight increase in predictive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ... ACM International Conference on Multimodal Interaction. ICMI (Conference)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.