Abstract
BackgroundHemophilia B is an X-linked bleeding disorder caused by a mutation in the gene responsible for encoding coagulation factor IX (FIX). Gene therapy offers promising potential for curing this disease. However, the current method of relatively high dosage of virus injection carries inherent risks. The purpose of this study was to introduce a novel scAAV-DJ/8-LP1-hFIXco vector transduced human umbilical cord blood derived mesenchymal stem cells (HUCMSCs) as an alternative cell-based gene therapy to conventional gene therapy for Hemophilia B.MethodsThe LP1-hFIXco gene structure was designed by us through searching the literature from NCBI and the scAAV-DJ/8-LP1-hFIXco vector was constructed by a commercial company. The HUCMSCs were cultivated in routine approach and transduced with scAAV-DJ/8-LP1-hFIXco vector. The human FIX activation system was employed for detection of hFIXco activity. The RNA and protein expression levels of the hFIXco were evaluated using PCR and western blot techniques. In animal studies, both NSG and F9-KO mice were used for the experiment, in which clotting time was utilized as a parameter for bleeding assessment. The immunohistochemical analysis was used to assess the distribution of HUCMSCs in mouse tissue sections. The safety for tumorigenicity of this cell-based gene therapy was evaluated by pathological observation after hematoxylin-eosin staining.ResultsThe transduction of HUCMSCs with the scAAV-DJ/8-LP1-hFIXco vector results in consistent and sustainable secretion of human FIXco during 5 months period both in vitro and in mouse model. The secretion level (hFIXco activity: 97.1 ± 2.3% at day 7 to 48.8 ± 4.5% at 5 months) was comparable to that observed following intravenous injection with a high dose of the viral vector (hFIXco activity: 95.2 ± 2.2% to 40.8 ± 4.3%). After a 5-month observation period, no clonal expansions of the transduced cells in tissues were observed in any of the mice studied.ConclusionsWe have discovered a novel and safer HUCMSCs mediated approach potentially effective for gene therapy in hemophilia B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.