Abstract
Long‐lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro‐inflammatory cytokine IFN‐γ is a key effector molecule herein. We recently showed that in murine T cells the production of IFN‐γ is tightly regulated through adenylate uridylate–rich elements (AREs) that are located in the 3′ untranslated region (UTR) of the Ifng mRNA molecule. Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti‐tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR‐Cas9 technology, we deleted the ARE region from the IFNG 3′ UTR in peripheral blood‐derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of IFN‐γ protein‐producing T cells. Importantly, combining MART‐1 T cell receptor engineering with ARE‐Del gene editing showed that this was also true for antigen‐specific activation of T cells. MART‐1‐specific ARE‐Del T cells showed higher percentages of IFN‐γ producing T cells in response to MART‐1 expressing tumor cells. Combined, our study reveals that ARE‐mediated posttranscriptional regulation is conserved between murine and human T cells. Furthermore, generating antigen‐specific ARE‐Del T cells is feasible, a feature that could potentially be used for therapeutical purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.