Abstract

Neuropsychiatric disorders (NPD) are prevalent and devastating, posing an enormous socioeconomic burden to modern society. Recent genetic studies of NPD have identified a plethora of common genetic risk variants with small effect sizes and rare risk variants of high penetrance. While exciting, there is a pressing need to translate these genetic discoveries into better understanding of disease biology and more tailored clinical interventions. Human induced pluripotent stem cell (hiPSC)-derived 2D and 3D neural cultures are becoming a promising cellular model for bridging the gap between genetic findings and disease biology for NPD. Leveraging the accessibility of patient biospecimen to convert into stem cells and the power of genome editing technology to engineer disease risk variants, hiPSC model holds the promise to disentangle the disease polygenicity, model genetic interaction with environmental factors, and uncover convergent gene pathways that may be targeted for more tailored clinical intervention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call