Abstract

Human serum paraoxonase (PON1) can protect low density lipoprotein (LDL) from oxidation induced by either copper ion or by the free radical generator azo bis amidinopropane hydrochloride (AAPH). During LDL oxidation in both of these systems, a time-dependent inactivation of PON arylesterase activity was observed. Oxidized LDL (Ox-LDL) produced by lipoprotein incubation with either copper ion or with AAPH, indeed inactivated PON arylesterase activity by up to 47% or 58%, respectively. Three possible mechanisms for PON inactivation during LDL oxidation were considered and investigated: copper ion binding to PON, free radical attack on PON, and/or the effect of lipoprotein-associated peroxides on the enzyme. As both residual copper ion and AAPH are present in the Ox-LDL preparations and could independently inactivate the enzyme, the effect of minimally oxidized (Ox-LDL produced by LDL storage in the air) on PON activity was also examined. Oxidized LDL, as well as oxidized palmitoyl arachidonoyl phosphatidylcholine (PAPC), lysophosphatidylcholine (LPC, which is produced during LDL oxidation by phospholipase A2-like activity), and oxidized cholesteryl arachidonate (Ox-CA), were all potent inactivators of PON arylesterase activity (PON activity was inhibited by 35%–61%). PON treatment with Ox-LDL (but not with native LDL), or with oxidized lipids, inhibited its arylesterase activity and also reduced the ability of the enzyme to protect LDL against oxidation. PON Arylesterase activity however was not inhibited when PON was pretreated with the sulfhydryl blocking agent, p-hydroxymercurybenzoate (PHMB). Similarly, on using recombinant PON in which the enzyme’s only free sulfhydryl group at the position of cysteine-284 was mutated, no inactivation of the enzyme arylesterase activity by Ox-LDL could be shown. These results suggest that Ox-LDL inactivation of PON involves the interaction of oxidized lipids in Ox-LDL with the PON’s free sulfhydryl group. Antioxidants such as the flavonoids glabridin or quercetin, when present during LDL oxidation in the presence of PON, reduced the amount of lipoprotein-associated lipid peroxides and preserved PON activities, including its ability to hydrolyze Ox-LDL cholesteryl linoleate hydroperoxides. We conclude that PON’s ability to protect LDL against oxidation is accompanied by inactivation of the enzyme. PON inactivation results from an interaction between the enzyme free sulfhydryl group and oxidized lipids such as oxidized phospholipids, oxidized cholesteryl ester or lysophosphatidylcholine, which are formed during LDL oxidation. The action of antioxidants and PON on LDL during its oxidation can be of special benefit against atherosclerosis since these agents reduce the accumulation of Ox-LDL by a dual effect: i.e. prevention of its formation, and removal of Ox-LDL associated oxidized lipids which are generated during LDL oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.