Abstract
Heterotypic complexes between the high-molecular-weight mucin MG1 and other salivary proteins in human submandibular/sublingual secretion (HSMSL) could have a significant impact on the biological properties of these proteins in oral fluids in both health and disease. We describe a mild procedure for isolation and purification of native MG1 by gel filtration chromatography on Sepharose CL-2B which does not involve dialysis, lyophilization, use of denaturing agents, or covalent modification. Western blots of native MG1 probed with antibodies against 8 different salivary proteins showed that complexing occurs between MG1 and salivary amylase, proline-rich proteins (PRPs), statherins, and histatins but not MG1, sIgA, secretory component, or cystatins. When native MG1 was placed in 4 M guanidine hydrochloride and chromatographed on Sepharose CL-4B, ELISA measurement of column fractions showed that amylase, PRPs, statherins, and histatins were released. Interestingly, gel filtration resolved the material which eluted into 4 or 5 distinct peaks, suggesting that the released entities were heterotypic complexes. From these studies, the occurrence of at least three different types of complexes between MG1 and other salivary proteins has been identified. Type 1 complexes are dissociated by SDS-PAGE and in 4 M guanidine hydrochloride. Type II complexes are not dissociated under these conditions. Type III complexes are dissociated during SDS-PAGE and by 4 M guanidine hydrochloride, but the released proteins appear to be complexes containing amylase, PRPs, statherins, and histatins. The possible functional role of heterotypic complexes between MG1 and other salivary proteins as a physiologic delivery system, a mechanism for protection against proteolysis, a repository for precursors of the acquired enamel pellicle, and a vehicle for modulation of the viscoelastic and rheological properties of saliva is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.