Abstract

Ovarian cancer represents one of the most malignant gynecological cancers worldwide, with an overall 5-year survival rate, being locked in the 25–30% range in the last decade. Cancer immunotherapy is currently one of the most intensively investigated and promising therapeutic strategy and as such, is expected to provide in the incoming years significant benefits for ovarian cancer treatment as well. Here, we provide a detailed survey on the highly pleiotropic oncosuppressive roles played by the human RNASET2 gene, whose protein product has been consistently reported to establish a functional crosstalk between ovarian cancer cells and key cellular effectors of the innate immune system (the monocyte/macrophages lineage), which is in turn able to promote the recruitment to the cancer tissue of M1-polarized, antitumoral macrophages. This feature, coupled with the ability of T2 ribonucleases to negatively affect several cancer-related parameters in a cell-autonomous manner on a wide range of ovarian cancer experimental models, makes human RNASET2 a very promising candidate to develop a “multitasking” therapeutic approach for innovative future applications for ovarian cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.