Abstract

Effective prevention of graft-versus-host disease (GvHD) is a major challenge to improve the safety of allogeneic stem cell transplantation for leukemia treatment. In murine transplantation models, administration of naturally occurring CD4+CD25+ regulatory T cells (Treg) can prevent GvHD. Toward understanding the role of human Treg in stem cell transplantation, we studied their capacity to modulate T-cell-dependent xenogeneic (x)-GvHD in a new model where x-GvHD is induced in RAG2-/-gammac-/- mice by i.v. administration of human peripheral blood mononuclear cells (PBMC). Human PBMC, depleted of or supplemented with autologous CD25+ Tregs, were administered in mice at different doses. The development of x-GvHD, in vivo expansion of human T cells, and secretion of human cytokines were monitored at weekly intervals. Depletion of CD25+ cells from human PBMC significantly exacerbated x-GvHD and accelerated its lethality. In contrast, coadministration of Treg-enriched CD25+ cell fractions with autologous PBMC significantly reduced the lethality of x-GvHD. Treg administration significantly inhibited the explosive expansion of effector CD4+ and CD8+ T cells. Interestingly, protection from x-GvHD after Treg administration was associated with a significant increase in plasma levels of interleukin-10 and IFN-gamma, suggesting the de novo development of TR1 cells. These results show, for the first time, the potent in vivo capacity of naturally occurring human Tregs to control GvHD-inducing autologous T cells, and indicate that this xenogeneic in vivo model may provide a suitable platform to further explore the in vivo mechanisms of T-cell down-regulation by naturally occurring human Tregs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.