Abstract
Brain biometrics have received increasing attention from the scientific community due to their unique properties compared to traditional biometric methods. Many studies have shown that EEG features are distinct across individuals. In this study, we propose a novel approach by considering spatial patterns of the brain's responses due to visual stimulation at specific frequencies. More specifically, we propose, for the identification of the individuals, to combine common spatial patterns with specialized deep-learning neural networks. The adoption of common spatial patterns gives us the ability to design personalized spatial filters. In addition, with the help of deep neural networks, the spatial patterns are mapped into new (deep) representations where the discrimination between individuals is performed with a high correct recognition rate. We conducted a comprehensive comparison between the performance of the proposed method and several classical methods on two steady-state visual evoked potential datasets consisting of thirty-five and eleven subjects, respectively. Furthermore, our analysis includes a large number of flickering frequencies in the steady-state visual evoked potential experiment. Experiments on these two steady-state visual evoked potential datasets showed the usefulness of our approach in terms of person identification and usability. The proposed method achieved an averaged correct recognition rate of 99% over a large number of frequencies for the visual stimulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.