Abstract

At present, the correct recognition rate of face recognition algorithm is limited under unconstrained conditions. To solve this problem, a face recognition algorithm based on deep learning under unconstrained conditions is proposed in this paper. The algorithm takes LBP texture feature as the input data of deep network, and trains the network layer by layer greedily to obtain optimized parameters of network, and then uses the trained network to predict the test samples. Experimental results on the face database LFW show that the proposed algorithm has higher correct recognition rate than some traditional algorithms under unconstrained conditions. In order to further verify its effectiveness and universality, this algorithm was also tested in YALE and YALE-B, and achieved a high correct recognition rate as well, which indicated that the deep learning method using LBP texture feature as input data is effective and robust to face recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.