Abstract
Human recognition is an essential requirement for human-centric surveillance, activity recognition, gait recognition etc. Inaccurate recognition of humans in such applications may leads to false alarm and unnecessary computation. In the proposed work a robust background modeling algorithm using fuzzy logic is used to detect foreground objects. Three distinct features are extracted from the contours of detected objects. An unique aggregated feature vector is formed using a fuzzy inference system by aggregating three feature vectors. To minimize computation in recognition using Hidden Markov model (HMM), the length of final feature vector is reduced using vector quantization. The proposed method is explained using five basic phases; background modeling and foreground object detection, features extraction, aggregated feature vector calculation, vector quantization, and recognition using Hidden Markov model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have