Abstract

A capillary electrophoresis (CE)-based enzyme assay method has been developed to screen protein kinase inhibitors. Four human kinases GSK3β, DYRK1A, CDK5/p25 and CDK1/cyclin B were chosen to test this novel method. These enzymes have been identified as very promising targets to develop treatments against cancer and neurodegenerative diseases. The efficiency of drugs against these relevant biological targets has never been carried out by CE. For this proposal, the capillary was used as a nanoreactor in which four reactants (the enzyme, its two substrates and its potential inhibitor) were successively injected, mixed by using transverse diffusion of laminar flow profiles and incubated. The adenosine 5′-diphosphate (ADP) formed during the enzymatic reaction was detected by UV and quantified. The efficiency of the developed CE method was validated by determining the IC50 values of a wide variety of inhibitors covering a large domain of affinity toward kinases and containing representative and chemically divergent skeletons. Excellent agreement was found between the results obtained by CE and those reported in the literature when using conventional radiometric enzyme assays. Moreover, CE was successfully used to determine the inhibitory effect of several potential inhibitors that was not yet assessed by conventional methods and is crucial for structure activity relation studies. This novel CE method is simple, rapid, very economic (few tens of nanoliters per IC50) and eco-friendly since no radioactivity was required. It could be extended to high-throughput screening of kinase inhibitors, which is of great interest for biomedical and pharmaceutical research fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call