Abstract

BackgroundPowered ankle-foot prostheses were developed to replicate the mechanics of the biological ankle by providing positive work during the push-off phase of gait. However, the benefits of powered prostheses on improving overall human gait efficiency (usually quantified by metabolic cost) have not been consistently shown. Here, we have focused on the mechanical work produced at the prosthetic ankle and its interaction with the amputee's movement. MethodsFive unilateral transtibial amputees walked on a treadmill using 1) a powered ankle-foot prosthesis and 2) their daily passive device. We determined the net ankle work and ankle work loops on the prosthesis-side to quantify the efficiency of the human-prosthesis physical interaction. We further studied peak propulsion timing and the posture of the amputee's lower limb and prosthesis as indicators of the human-prosthesis coordination. Comparisons were made between the passive and powered prosthesis conditions for each participant. FindingsThe powered prosthesis did not consistently increase net ankle work compared to each participant's passive device. For participants that lacked efficiency in interacting with the powered prosthesis, we observed 1) early prosthesis-side peak propulsion timing (≥ 4% earlier) and 2) a more vertical residual shank at the time of peak propulsion (> 2° more vertical) indicating that the human's limb movement and the prosthesis control during push-off were not well coordinated. InterpretationResults from this preliminary study highlight the need for future work to systematically quantify the coordination between the human and powered prosthesis and understand how such coordination at the joint level influences overall gait efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.