Abstract

Most existing lower limb orthosis use actuators and active controller to guide the motion of human lower limbs. Actuators with relatively large power are usually required to compensate the gravity effect of the human lower limbs, even for a normal walking. Hence, design of an orthosis for the weight balance of human lower limbs is desired. For the motion compatibility, the human hip joint is treated as a planar pair and the knee joint as a revolute pair. As a consequence, while the lower limb is in motion, the exact positions of the mass centers of the human lower limbs cannot be obtained. Hence, in this work, topological synthesis of the orthosis mechanisms, which can trace the mass centers of the human thigh and shank, respectively, is implemented. The weight balance of the human lower limbs is achieved by fitting a minimum number of zero-free-length springs. Based on the anthropometric parameters, dimensions of the lower limb orthosis is determined and the proposed design is justified by the simulation executed by the software of ProEngineer. Finally, a first generation prototype is built.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call