Abstract

Cardiovascular disease (CVD) is the most common cause of death in the United States and is associated with a high economic burden. Prevention of CVD focuses on controlling or improving the lipid profile of patients at risk. The human lipidome is made up of thousands of ubiquitous lipid species. By studying biologically simple canonical lipid species, we investigated whether the lipidome is genetically redundant and whether its genetic influences can provide clinically relevant clues of CVD risk. We performed a genetic study of the human lipidome in 1212 individuals from 42 extended Mexican American families. High-throughput mass spectrometry enabled rapid capture of precise lipidomic profiles, providing 319 unique species. Using variance component-based heritability analyses and bivariate trait analyses, we detected significant genetic influences on each lipid assayed. Median heritability of the plasma lipid species was 0.37. Hierarchical clustering based on complex genetic correlation patterns identified 12 genetic clusters that characterized the plasma lipidome. These genetic clusters were differentially but consistently associated with risk factors of CVD, including central obesity, obesity, type 2 diabetes mellitus, raised serum triglycerides, and metabolic syndrome. Also, these clusters consistently predicted occurrence of cardiovascular deaths during follow-up. The human plasma lipidome is heritable. Shared genetic influences reduce the dimensionality of the human lipidome into clusters that are associated with risk factors of CVD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call