Abstract

Keratinocyte cultures have been used for the treatment of severe burn patients. Here, we describe a new cultured bioengineered skin based on (1) keratinocytes and fibroblasts obtained from a single skin biopsy and (2) a dermal matrix based on human plasma. A high expansion capacity achieved by keratinocytes grown on this plasma-based matrix is reported. In addition, the results of successful preclinical and clinical tests are presented. Keratinocytes and fibroblasts were obtained by a double enzymatic digestion (trypsin and collagenase, respectively). In this setting, human fibroblasts are embedded in a clotted plasma-based matrix that serves as a three-dimensional scaffold. Human keratinocytes are seeded on the plasma-based scaffold to form the epidermal component of the skin construct. Regeneration performance of the plasma-based bioengineered skin was tested on immunodeficient mice as a preclinical approach. Finally, this skin equivalent was grafted on two severely burned patients. Keratinocytes seeded on the plasma-based scaffold grew to confluence, allowing a 1,000-fold cultured-area expansion after 24 to 26 days of culture. Experimental transplantation of human keratinocytes expanded on the engineered plasma scaffold yielded optimum epidermal architecture and phenotype, including the expression of structural intracellular proteins and basement-membrane components. In addition, we report here the successful engraftment and stable skin regeneration in two severely burned patients at 1 and 2 years follow-up. Our data demonstrate that this new dermal equivalent allows for (1) generation of large bioengineered skin surfaces, (2) restoration of both the epidermal and dermal skin compartments, and (3) functional epidermal stem-cell preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.