Abstract

This study aims to investigate the effect of human osteoprotegerin (hOPG) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) combined with hydroxyapatite (HA) scaffolds on the repair of mandibular defects in ovariectomized rats. rBMSCs were transfected with adenovirus carrying pDC316-hOPG-EGFP. The expression of hOPG and the inhibition of osteoclast function were detected by Western blot and bone-grinding experiment respectively. The model of mandibular bone defect in rats with osteoporosis was established; HA, untransfected rBMSCs-conjugated HA, and transfected rBMSCs-conjugated HA scaffolds were implanted into the mandibular bone defects. After six weeks, tartrateresistant acid phosphatase staining and hematoxylin-eosin staining were used to observe the number of osteoclasts and repair of bone defect. Adenovirus carrying hOPG gene in vitro were successfully transfected into rBMSCs. The hOPG with anti-osteoclast activity was expressed by hOPG-rBMSCs, and rBMSCs expressing hOPG combined with HA scaffolds promoted mandibular defect repair. rBMSCs transfected with hOPG gene inhibited the function of osteoclasts both in vitro and in vivo, and transfected rBMSCs combined with HA scaffolds promoted the repair of mandibular defects in rats with osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.