Abstract
Vision depends on retinoid exchange between the retinal pigment epithelium (RPE) and photoreceptors. Defects in any step of the canonical visual cycle can lead to retinal degenerations. All-trans-retinol (atROL) plays an important role in visual signal transduction. However, how atROL enters human RPE from the apical membrane remains unclear. This study investigated the role of human organic anion transporting polypeptide 1A2 (OATP1A2) in atROL uptake in human RPE. Immunoblotting and immunostaining elucidated the expression and localization of OATP1A2 in human RPE. Transporter functional studies were conducted to assess the interaction of OATP1A2 with atROL. Our study revealed OATP1A2 is expressed in human RPE, mainly at the apical membrane. Our data also indicated atROL inhibited the uptake of the typical OATP1A2 substrate, oestrone-3-sulfate (E3S), in over-expressing cells. Studies on the uptake of (3) H-atROL in these over-expressing cells revealed atROL is a substrate of OATP1A2. We confirmed these findings in human primary RPE cells. The transport of E3S and atROL was significantly reduced in human primary RPE cells with OATP1A2 siRNA silencing. Our data provides the first evidence of OATP1A2 expression in human RPE and more importantly, its novel role in the cellular uptake of atROL, which might be essential to the proper functioning of the canonical visual cycle. Our findings contribute to the understanding of the molecular mechanisms involved in retinoid transport between the RPE and photoreceptors and provide novel insights into potential pharmaceutical interventions for visual cycle disruption associated with retinal degenerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.