Abstract

NM23-H2/NDP kinase B has been identified as a sequence-specific DNA-binding protein with affinity for a nuclease-hypersensitive element of the c-MYC gene promoter (Postel et al., 1993). The ability of Nm23-H2 to activate c-MYC transcription in vitro and in vivo via the same element demonstrates the biological significance of this interaction. Mutational analyses have identified Arg34, Asn69 and Lys135 as critical for DNA binding, but not required for the NDP kinase reaction. However, the catalytically important His118 residue is dispensible for sequence-specific DNA binding, suggesting that sequence-specific DNA recognition and phosphoryl transfer are independent properties. Nm23-H2 also has an activity that cleaves DNA site-specifically, involving a covalent protein-DNA complex. In a DNA sequence-dependent manner, Nm23-H2 recognizes additional target genes for activation, including myeloperoxidase, CD11b, and CCR5, all involved in myeloid-specific differentiation. Moreover, both NM23-H1 and Nm23-H2 bind to nuclease hypersensitive elements in the platelet-derived growth factor PDGF-A gene promoter sequence-specifically, correlating with either positive or negative transcriptional regulation. These data support a model in which NM23/NDP kinase modulates gene expression through DNA binding and subsequent structural transactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.