Abstract
This paper proposes a novel algorithm called low dimensional space incremental learning (LDSIL) to estimate the human motion in 3D from the silhouettes of human motion multiview images. The proposed algorithm takes the advantage of stochastic extremum memory adaptive searching (SEMAS) and incremental probabilistic dimension reduction model (IPDRM) to collect new high dimensional data samples. The high dimensional data samples can be selected to update the mapping from low dimensional space to high dimensional space, so that incremental learning can be achieved to estimate human motion from small amount of samples. Compared with three traditional algorithms, the proposed algorithm can make human motion estimation achieve a good performance in disambiguating silhouettes, overcoming the transient occlusion, and reducing estimation error.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have