Abstract

By accounting for most of the poleward atmospheric heat and moisture transport in the tropics, the Hadley circulation largely affects the latitudinal patterns of precipitation and temperature at low latitudes. To increase our preparednesses for human-induced climate change, it is thus critical to accurately assess the response of the Hadley circulation to anthropogenic emissions1-3. However, at present, there is a large uncertainty in recent Northern Hemisphere Hadley circulation strength changes4. Not only do climate models simulate a weakening of the circulation5, whereas atmospheric reanalyses mostly show an intensification of the circulation4-8, but atmospheric reanalyses were found to have artificial biases in the strength of the circulation5, resulting in unknown impacts of human emissions on recent Hadley circulation changes. Here we constrain the recent changes in the Hadley circulation using sea-level pressure measurements and show that, in agreement with the latest suite of climate models, the circulation has considerably weakened over recent decades. We further show that the weakening of the circulation is attributable to anthropogenic emissions, which increases our confidence in human-induced tropical climate change projections. Given the large climate impacts of the circulation at low latitudes, the recent human-induced weakening of the flow suggests wider consequences for the regional tropical-subtropical climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call