Abstract
Despite frequent detection in environmental waters, literature which quantifies the health risk of silver nanoparticles (Ag NPs) through oral ingestion is scarce. This study compiled literature data to find the removal of Ag NPs from different treatment schemes (i.e., natural, engineered, or hybrid). Ag NP concentrations were found either in surface water or in groundwater based on where the effluent of treatment schemes was discharged, i.e.,either in surface water or in groundwater. Monte-Carlo simulation was carried out for probabilistic assessment of health risks for children for two hypothetical exposure scenarios: (a) ingesting river water while swimming and (b) drinking groundwater. Bio-accessible fraction, dietary metal adsorption factor, and concentrations of silver ions were incorporated to simulate realistic situations. Different treatment schemes were ranked for their nanoparticles' removal efficiency with respect to (i) exceedance probability from guideline value and (ii) health risk to children. Hybrid treatment combinations, i.e., conventional primary and secondary treatment units followed by nature-based units (constructed wetlands and soil aquifer treatment), were ranked the best. The health risk value was found to be less than 1, with the 99th percentile value less than 10-3 in all cases. The maximum allowable concentration of Ag NPs was found to be as low as 1.43 mg/L for groundwater, suggesting probable potential for risk. Uncertainty analysis revealed that the uncertainty of the influent NPs concentration in raw wastewater contributes > 99% to the variance of the hazard index. The results of this work indicate that the use of natural treatment technologies with existing engineered treatments provides higher nanoparticle removal from wastewater without the requirement of any tertiary treatment unit.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have