Abstract
Dummy headforms used for impact testing have changed little over the years, and frictional characteristics are thought not to represent the human head accurately. The frictional interface between the helmet and head is an essential factor affecting impact response. However, few studies have evaluated the coefficient of friction (COF) between the human head and helmet surface. This study's objectives were to quantify the human head's static and dynamic COF and evaluate the effect of biological sex and hair properties. Seventy-four participants slid their heads along a piece of helmet foam backed by a fixed load cell at varying normal force levels. As normal force increased, static and dynamic human head COF decreased following power-law curves. At 80 N, the static COF is 0.32 (95% CI 0.30-0.34), and the dynamic friction coefficient is 0.27 (95% CI 0.26-0.28). Biological sex and hair properties were determined not to affect human head COF. The COFs between the head and helmet surface should be used to develop more biofidelic head impact testing methods, define boundary conditions for computer simulations, and aid decision-making for helmet designs.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.