Abstract
Open Targets, a consortium among academic and industry partners, focuses on using human genetics and genomics to provide insights to key questions that build therapeutic hypotheses. Large-scale experiments generate foundational data, and open-source informatic platforms systematically integrate evidence for target-disease relationships and provide dynamic tooling for target prioritization. A locus-to-gene machine learning model uses evidence from genome-wide association studies (GWAS Catalog, UK BioBank, and FinnGen), functional genomic studies, epigenetic studies, and variant effect prediction to predict potential drug targets for complex diseases. These predictions are combined with genetic evidence from gene burden analyses, rare disease genetics, somatic mutations, perturbation assays, pathway analyses, scientific literature, differential expression, and mouse models to systematically build target-disease associations (https://platform.opentargets.org). Scored target attributes such as clinical precedence, tractability, and safety guide target prioritization. Here we provide our perspective on the value and impact of human genetics and genomics for generating therapeutic hypotheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.